If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3)(16x^2+24x-43)=0
We multiply parentheses
48x^2+72x-129=0
a = 48; b = 72; c = -129;
Δ = b2-4ac
Δ = 722-4·48·(-129)
Δ = 29952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{29952}=\sqrt{2304*13}=\sqrt{2304}*\sqrt{13}=48\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-48\sqrt{13}}{2*48}=\frac{-72-48\sqrt{13}}{96} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+48\sqrt{13}}{2*48}=\frac{-72+48\sqrt{13}}{96} $
| 2x-1=3x+6=x+9 | | 14x-1=8x+11 | | 5=m+3÷4/7 | | 3=x+15/9 | | 2(1-2x)=1+3(6x-8) | | -4x-66=-6 | | 7x-9=24+9 | | 5x+x²=9 | | 1.6x+11.2=2x+10 | | 7=5+g | | -4x-48=-8 | | -2/3x–21/4=27/4 | | 4n^2-18n=0 | | 9x-(2x+5)=4x+(2x-8) | | x*54=24x+240 | | 23=4u–6u+1 | | 650/6.5=5/x | | 18-4n=8-2(1+8n)= | | (3x+1)(1-3x)+2(1-3x)=(x-1) | | 2.75=n | | 8(2d-3)=(4d-7) | | 2x+27/3=9+x | | 2x+12+3x-47=180 | | (r+8)+r=34 | | 9x^2+7x-31=0 | | 5x+3=6+15x | | 18+4+m=(5-3)m | | 2800x^-2=0 | | 5x-6/11=x-7/9 | | 5(x+3)=2(2x-3) | | 15x-6/11=x-7/9 | | 3w-3=5w-13 |